
 

Trajectories 
• We compute time series for topical stability 

and emotional dimensions associated with 

three parties: FP, SP & VP. 

• Topical stability: overlap of semantic neigh-

borhoods in subsequent years (PPMI based).  

• Emotional dimension: net valence and arous-

al of semantic neighborhoods. 

• Time series modeled with GAMs. 
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Political discourse 
• Political discourse is associated with emo-

tions (e.g. positive/negative topic). 

• We explore to what extent shifts in the top-

ics that political parties are associated with 

relate to emotional dynamics. 

• We use parliamentary discourse (ParlAT) 

and online/print media (AMC) in Austrian 

German. 

Results 
• No clear tendency that emotional shifts are 

driven by topical changes or vice versa. 

• Two domains, parliamentary discourse and 

media, seem to be rather disconnected. 

• Exception: topical stability of FP (right-

wing) in the parliament seems to affect dy-

namics in the media (both topical and emo-

tional). 

Causal analysis 
• We cluster time series to identify similar 

groups of party-variable developments 

(ACF based clustering, Ward linkage). 

• Cluster selection with ASW and HG. 

• We determine Granger causal relationships 

between time series within groups. 

• Granger causal directed graphs are con-

structed via causal relationships. 
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