A data augmentation approach for sign-language-to-text translation in-the-wild

Fabrizio Nunnari - DFKI, Saarland Informatics Campus D3 2, Saarbrücken, Germany
Cristina España-Bonet - DFKI, Saarland Informatics Campus D3 2, Saarbrücken, Germany
Eleftherios Avramidis - DFKI, Alt Moabit 91c, 10559 Berlin, Germany

Problem: most SL-video-to-text translation systems focus on frontal view recognition of sign language performances in very controlled environments.

However: real settings are subject to different conditions: illumination, angle of view, cameras, clothing, background, skin tones, body proportions, ...

Our Approach: let specialized tools extract animation information and augment on a normalized and controlled environment.

Option 1: end-to-end translation (from pixels to text)

Option 2: (motion) feature extraction first
(pixels to features/animation, features/animation to text)

Option 3 (ours): motion data extraction and augmentation
(pixels to animation, augmentation, animation data to text)

Advantages:
- Leave specialized tools (e.g., MediaPipe, OpenPose), trained with much data, normalized environmental conditions (brightness, clothing, ...)
- Full control of the augmentation parameters (cameras, body sizes, execution speed, ...)

Test the model on Sign Language corpora recorded in un-controlled conditions.

Hypothesis: Despite training corpora are recorded in controlled environments, SL recognition will work better in non-controlled environment.

The research reported in this paper was supported by the BMBF (German Federal Ministry of Education and Research) in the project SOCIALWEAR (Socially Interactive Smart Fashion, DFKI Kst 22132).