Tackling Domain-specific Winograd Schemas with Knowledge-based Reasoning and Machine Learning

^{1,2}Suk Joon Hong and ¹Brandon Bennett ¹University of Leeds, United Kingdom, ²InfoMining Co., South Korea

Introduction

- The Winograd Schema Challenge (WSC)[1] is to resolve the reference of pronouns occurring in natural language sentences.
- We tackle the WSC with knowledge-based reasoning(KR) and machine learning(ML). Here is an example from the WSC:
- The trophy doesn't fit in the brown suitcase because **it** is too large. 1.
- The candidates : the trophy / the suitcase, Answer: the trophy Ο
- The trophy doesn't fit in the brown suitcase because it is too small. 2.
- The candidates : the trophy / the suitcase, Answer: the suitcase Ο

Domains in WSC

- The thanking domain: the sentences that include "thank" and "grateful" were extracted from WinoGrande[2] (171 out of 44K).
- Around 77% of the sentences follow the five patterns.

High-level patterns in the thanking domain

- Candidate1 owes candidate2, and (so) pronoun is doing good 1
- Candidate1 owes candidate2, and (so) pronoun is receiving good 2
- Candidate1 does good to candidate2 because pronoun is owing 3
- Candidate1 gives thanks to candidate2 because pronoun is being owed 4
- Candidate1 gives thanks to candidate2 because pronoun is owing 5

Our Semantic-role Based KR Method

- Our KR method is built by modifying the method of Sharma[3].
- Building a domain-specific knowledge base 1.
- We define rules to derive semantic relations from K-Parser outputs

Semantic roles from K-Parser

Robust Accuracy

- 'Robust Accuracy': A stricter form of accuracy measurement
- In addition to the switching[4], adding three more variants of each sentence by replacing the name of each candidate with the random name with the same gender
- Predicting correctly on all the five sentences is needed to be robustly accurate. Here is an example from WinoGrande (1: original, 2: switched, 3 ~ 5: replaced with random names):

The variants of the example sentence

- 1 Kayla cooked sticky white rice for Jennifer, and [she] was thanked ...
- Jennifer cooked sticky white rice for Kayla, and [she] was thanked ... 2
- Erin cooked sticky white rice for Tanya, and [she] was thanked ...

Experiments

• The 80 paired Winograd schema sentences in the thanking domain were used for the experiments. In the first experiment, each pair was *split* into the train set and the test set, and in the second experiment, each pair was put together.

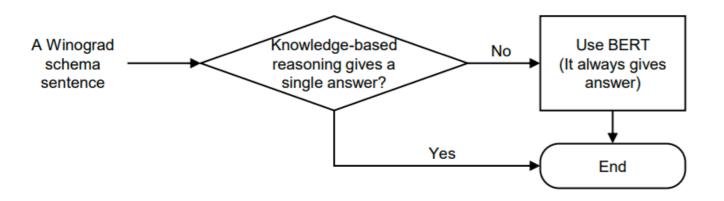
Results

- The accuracies and the robust accuracies of our ensemble model (KR + ML) are better than those of the other methods.
- The models that contain a language model were found to have lower robust accuracies than raw accuracies.

N	N	
X	Υ	because relation
helper	being helped	No
helper	being helped	Yes
giver	being given	No
giver	being given	Yes
thanker	being thanked	Yes

Transforming a Winograd schema sentence into a high-level 2. representation

- K-Parser and the domain-specific knowledge base are used.
- An example from WinoGrande: "Kayla cooked sticky white rice for Jennifer, and [she] was thanked for making such delicate rice."


Kayla	Jennifer	because relation	
giver	being given	No	

Jennifer **owes** Kayla

- She is being thanked, which is an instance of receiving good. Therefore, the sentence can be abstracted to "Jennifer owes Kayla and she is *receiving good.*" This matches with the second high-level pattern.
- **Reasoning to derive the answer** 3.
- Answer Set Programming is used for reasoning.
- The answer can be derived by applying the background knowledge principles regarding the high-level patterns to the abstracted sentence.

Our Ensemble Method

• We propose a simple ensemble method by combining our semanticrole based KR method and ML (a fallback).

Model	Accuracy	Robust accuracy	Accuracy	Robust accuracy
GPT-2	50.0%	20.0%	57.5%	15.0%
BERT-large	57.5%	37.5%	57.5%	35.0%
Kocijan's BERT-large[5]	70.0%	62.5%	77.5%	70.0%
Kocijan's BERT-large further fine-tuned	47.5%	42.5%	75.0%	70.0%
Our KR method	72.5%	72.5%	37.5%	37.5%
Our ensemble method	90.0%	85.0%	80.0%	72.5%

Conclusion

- Our robust accuracy shows language models' predictions could be vulnerable to minor changes.
- We propose a high-level KR method based on semantic roles.
- Our keywords method is used to define the thanking domain, and it can be applied to specify other domains for future work.
- In our test set for the thanking domain, our ensemble method gives a better and more robust performance than the other approaches we tested.

References

- Hector Levesque, Ernest Davis, and Leora Morgenstern. The winograd schema challenge. In the 13th Internation 1. al Conference on Principles of Knowledge Representation and Reasoning, Italy, June 2012.
- 2. Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An adversarial winograd sc hema challenge at scale. In AAAI-20, 2020.
- 3. Arpit Sharma. Using answer set programming for commonsense reasoning in the winograd schema challenge. ar Xiv:1907.11112[cs.AI], 2019.
- 4. Paul Trichelair, Ali Emami, Adam Trischler, Kaheer Suleman, and Jackie C. K. Cheung. How reasonable are commo n-sense reasoning tasks: A case-study on the winograd schema challenge and swag. arXiv:1811.01778[cs.LG], 20 18.
- Vid Kocijan, Ana M. Cretu, Oana M. Camburu, Yordan Yordanov, and Thomas Lukasiewicz. A surprisingly robust t 5. rick for winograd schema challenge. In Proceedings of the 57th Annual Meeting of the Association for Computati onal Linguistics, pages 4837—4842, 2019.